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AMtract--A novel new nonintrusive measurement technique, based on ),-ray scattering, has been 
developed and applied. In particular, the local void fraction distribution has been measured for various 
air/water two-phase flow regimes in an eccentric annulus. A significant amount of lateral phase 
distribution was observed. Indeed, the gas was found to preferentially collect in the region of the test 
section having the largest gap. These data trends are in agreement with prior data taken with boiling fluid, 
and indicate that the lateral "void drift" forces are quite strong. 
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INTRODUCTION 

Multiphase flows are prevalent in many applications in the power, process and petrochemical 
industries. To date, however, our ability to perform mechanistic thermal-hydraulic evaluations of 
multiphase systems is limited by an inadequate understanding of  lateral phase distribution 
phenomena. In particular, to accurately predict two-phase pressure drop and heat transfer one must 
be able to model multidimensional phase distribution. 

Previous studies (Wang et al. 1987) have shown that turbulence-induced lateral forces are 
responsible for the observed phase distribution for bubbly flows in simple geometry conduits 
(i.e. in a vertical pipe). In contrast, our understanding of  phase distribution mechanisms for various 
flow regimes in complex geometry conduits is not well-developed. The purpose of the experimental 
study presented herein was to provide information on phase distribution in eccentric annuli. 

DISCUSSION 

It has been known for some time (Kondic & Hahn 1970) that ~,-ray scattering density 
measurement techniques can, in principle, be used to nonintrusively measure the local density of 
a two-phase system. 

This type of technique was previously used to measure the density in the central subchannel of 
a simulated 4 x 4 rod fuel bundle (Zielka & MacKinnon 1977). However, in order to use the 
technique, the assumption was required that the density profile be azimuthally symmetric. 

Other developments in T-ray scattering measurement techniques have relied heavily on the energy 
dependence of  Compton scattering. Elias & Ben-Haim (1980) developed an experimental procedure 
using a combination of a tightly-collimated initial beam and a photon detector with a wide-angle 
collimator. Kondic et al. 0983) have shown the possibility of utilizing a fan beam and a wide-angle 
photon detector. These methods rely on the ability to discriminate multiple-scattered photons and 
the one-to-one correspondence between the angle of scattering and the energy of  scattered photons. 
While such wide-angle methods have possibilities, they do not appear to be well-suited for 
measurements in complex geometries (e.g. an annular test section or rod bundle) due to the presence 
of high-density structural materials. In addition, due to the limited resolution of most photon 
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detection systems, it is very difficult to accurately determine the location of the photon scattering 
site and thus the local density. 

Nevertheless, nonintrusive 7-ray scattering techniques clearly possess important advantages over 
traditional intrusive two-phase flow measurement techniques, which disturb the flow field being 
measured and affect the accuracy of the measurement. 

Previous y-ray scattering techniques that were applied to the measurement of two-phase flows 
were based on the unrealistic assumption of ideal photon beam collimation and/or point scattering. 
Such models ignored the fact that the primary photon beam diverges and is attenuated within the 
scattering volume. 

A novel new measurment device has been developed for the nonintrusive measurement of the 
local void fraction distribution in conduits of complex geometry (Ohkawa & Lahey 1983). The 
analysis of this device is based on the principle of Compton scattering of photons and does not 
make unrealistic assumptions concerning collimation and scattering. 

Let us now consider the mathematical modeling of scattering events and detector response as 
a function of scattering volume position and the local density of the material in which the scattering 
takes place. 

Figure 1 gives a schematic view of the v-ray scattering densitometer, showing an NaI detector, 
three lead collimators (A, B and C), a shielded source and a scattering point, P, in the scattering 
material. 

Scattering events occur in the following sequence. First, y-rays (i.e. photons) with an energy of 
0.662 MeV leave the 137Cs source isotropically. The shield and collimator A allow photons only 
in the direction of P, thus giving a beam of photons that is essentially uniform in energy and 
direction. Upon entering the scattering material, the photon beam is attenuated by absorption and 
scattering. In this energy range (0.662 MeV), Compton scattering dominates over other photon 
interactions. Most of the photons that reach point P travel through it without interaction, while 
some undergo scattering or absorption. Some of the photons scattered at P eventually reach the 
NaI detector through two collimators, B and C. As the densitometer (which includes the source, 
the collimators and the dectector) moves relative to the scattering material, the detector response 
changes, reflecting the local density at point P and beam attenuation up to, and from, point P. 
Let us now review the Compton scattering theory on which the y-ray scattering densitometer is 
based. 

A photon has its energy reduced when scattered by an electron. Its resulting energy can be 
calculated as 

EI-/1_ cos 0 + E~) 
[1] 
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Figure 2. Energy distribution of photons reaching the detector. 
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and its differential cross section is given by the well-known Klein-Nishina formula (Knoll 1979): 

da~o) = 0.023 Z r/2(r/_ i + ~/_ sin 2 0) cm2/g sr, [2] 
dr2 

where 

Z/A = number of electrons per atom of the mixture, 
n = E, /Eo ,  

E0 = initial energy (MeV), 
El = energy of the scattered photon (MeV), 
Ee = 0.511 MeV, the rest mass energy of  an electron, 

and 

0 = scattering angle. 

A typical measured counts vs energy response, when P is inside and outside the scattering 
material, is shown in figure 2. The peak at 0.202 MeV is due to photons that are scattered through 
an angle 0, from the scattering point P, and have reached the detector through the two collimators 
(B and C). Since, as described by [1], single-scattered photons are uniquely related to the scattering 
angle, one can determine the response from point P by setting the window of a single-channel 
analyzer on the 0.202 MeV peak. Unfortunately, this does not eliminate the effect of multiple 
scattering (Ohkawa & Lahey 1983). This poses a potentially serious problem since it implies that 
photons may be counted even after experiencing two or more collisions. Thus, the detector response 
function, D(Z), consists of four components: 

D ( Z )  = C ( l ) ( Z )  "Jr- c ( m ) ( z )  dr. n "Jr- e(Z), [31 

where 

D(Z) = detector response (i.e. the counting rate), 
Co)(Z) = counting rate due to single-scattered photons, 
C(m)(z) = counting rate due to multiple-scattered photons, 

B = background 

and 

e(Z) = measurement noise. 

Each component can be derived either theoretically or experimentally, as will be discussed. 
Let us first consider single-scattered photons. Assume the source is at the origin and the source, 

the detector and the scattering point, P, are in the vertical plane. Let a superscript • on Z designate 
the distance measured from the origin, while Z without the superscript is measured from the surface 
of the test section. 
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The following are 
scattering: 

(1) 

(2) 

(3) 

(4) 

assumptions made in the derivation of the detector response for point 

The unattenuated v-ray flux is a function of Z~' only (i.e. there is no X-Y 
dependence). 
All material properties are only functions of distance from the surface of the test 
section. 
The angle Ol between the incoming and outgoing photon beams stays constant 
within the scattering volume. 
Photons suffer no scattering or absorption in air. 

The expression of the counting rate per unit volume from P, a point inside the scattering material, 
can be constructed using the well-known point kernel method (Ohkawa & Lahey 1983): 

c~)(z~, z,*) = q~(z~') a~(z~*) ~ (z~' - z,*)p(Z~ - z,*) 

x exp - p ( Z '  - Z * )  (Z "  - Z * )  d Z '  
L J ~  

[:1 ou, xexpF-C~P(Z'-Z'>L Jz, (Z'-Z*)cosOd [4] 

where 

Ed = efficiency of the detection system, 
¢(Z*)  = unattenuated y-ray flux at point P, 

C~)(Z *, Z~') = counting rate per unit volume due to single-scattered photons from point P, 
Af2(Z*) = solid angle of the detector opening viewed from point P, 

do" c 
dr2 (Z* - Z*) = differential Compton scattering cross section, which is a function of 

distance from the surface of the test section, 
p(Z*-  Z * ) =  local density, which is a function of distance from the surface of the test 

section, 
in 

(Z" - Z~*) = mass attenuation coefficient of the scattering material for the energy of the 
incoming photons, which is a function of the distance from the surface of 
the test section, 

and 

[~l°"~(Z ' - Z * ) = m a s s  attenuation coefficient of the material for the energy of the scattered 
LP.J (at angle 0)) photons, which is a function of the distance from the surface 

of the test section. 

The last two exponential terms in [4] are the attenuation factors for the incoming and outgoing 
photons, respectively. For simplicity, we can define a modified mass attenuation factor as 

in o u t  F- l 
LP J cos t~, L9 l 

Since the collimated photon beam has a finite width, C~ ) must be integrated over the volume 
in which scattering takes place, and from which the single-scattered photons reach the detector. 
Figure 3 shows a ray diagram of the diverging photon beam and the scattering volume that contains 
point P. Thus, the detector counting rate due to single scattering from the scattering volume is given 
by 

C~I) (Z~', Z*min, Z*,~) ffi fz.~ ~Xm.,(Z;) I r,,,,(~O C~,)(Z,~ , Z~) dy dX dZ~. [6] 
d z.,.~, j x,~.(~) J }',m(zt,. x) 

By assumption, the integrand in [6] has no dependence on X or Y. Therefore, the integration 
with regard to X and Y results in the term A,v(Z*), which is the local cross-sectional area of the 
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Figure 3. Ray diagram of the scattering volume. 

scattering volume. By combining the terms that are determined by the geometry and the 
characteristics of the densitometer system, we obtain a kernel function 

g ( z * )  ~- Ed~P(Z~)A[2(Z~)Asv(Z~). [7] 

Next, we can combine the terms that are material properties: 

R ( Z *  - Z * ) - - d - ~  (Ze - Z~*)p(Z* - Z* )  exp - p ( Z '  - Z*) f l (Z"  - Z'~) d Z '  . [8] 

Since K ( Z * )  = 0 for Ze* ~< Z'in and Z~' i> Z*ax, and, because of the assumption made earlier that 
there is no scattering or absorption in the air, p ( Z *  - Z*) = 0 for Z* ~< Z*. Thus, the lower limit 
of integration in [6], Z ' i , ,  can be set to the position of the surface of the test section, Z*. It is 
convenient to redefine the variables and the functions as follows: 

Z A T *  7*  
n , t . ~  ttla x - -  L.~I ) 

z - Z *  - z~*, 

C(~)(Z) ~- C~)(Z*ax - Z, Z%x), 

K ( Z  - z)z~ K[Z*,x - ( Z  - z)] 

and 

R(z)~-R(Z g - z r ) .  [9] 

Combining [7]-[9], [6] yields the following integral: 

C°)(Z)  = f :  K ( Z  -- z ) R ( z )  dz. [10] 

Equation [10] is a convolution integral for the counting rate response from single-scattered photons 
as a function of the distance from the surface of the test section to the upper limit of the scattering 
volume. 

An analysis of multiple-scattered photons indicates (Ohkawa & Labey 1983) that there are two 
types of photons; single/multiple-scattered photons, which are scattered once inside the test section 
but undergo multiple collisions outside the test section, and multiple/multiple-scattered photons, 
which may undergo multiple scattering both inside and outside the test section. It was found 
(Ohkawa & Lahey 1983) that the latter can be either neglected or evaluated from the calibration 
data, and that the former can be modeled in the same way as the single-scattered photons. Thus, 

C(l 'm)(z )  = K(m)(Z -- z)R(m)(z) dz, [11] 
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where 

c l'm~(z) = single/multiple-scattering rate, 
K(m)(z) = kernel function for multiple scattering 

and 

R(m~(z) = R function of  the scattering material for multiple scattering. 

Therefore, the detector response, [3], can be expressed in more detailed form: 

;0 f0 
+ z 

D(Z)  = K(Z  - z)R(z)  dz K(m)(z - z)R(m)(z) dz + C(m'~)(Z) + B + e(z), [12] 

where c(m'm)(Z) is the term that quantifies the photons that undergo multiple scattering within the 
test section. As mentioned previously, it was found (Ohkawa & Lahey 1983) that this term can 
be combined with the background term, B. 

DETERMINATION OF THE KERNEL AND CALIBRATION EXPERIMENT 

To calculate the density profile, we must first determine the kernel from data taken for a known 
density field. Calibration experiments were performed with an annular test section which consisted 
of  a 10.16 cm o.d., 3.81 cm i.d. Lucite pipe and a 1.27 cm dia stainless steel rod. Measurements were 
taken with the test section, first filled with air, and then filled with water, at 25 locations along 
the length of  photon beam. More than 10,000 counts were taken for each measurement point to 
obtain a statistical error of  < 1%. For a 10 Ci mCs photon source, a counting time of  700-4000 s 
per measurement point was required. Hence, the detector responses for the all air, Do(Z), and all 
liquid, DE(Z), cases were obtained. From these data the counting rate due to the multiple-scattered 
photons could be estimated. The counting rate due to the single-scattered photons was then 
obtained by subtracting the constant background, B, and the total multiple-scattered photon 
contribution, C(m)(Z), from Do(Z ). Hence, 

C~)(Z) = Do(Z) - [B + Ctm)(Z)]. [13] 

When the scattering volume is the Lucite wall, [12] and [13] imply 

C(~)(Z) = f z  K(Z  - z)Rw(z) dz + e o ( Z ) ,  [14] 

where Rw(z) is the R function for the Lucite wall, defined as 

z~ [- ]da~ 
Rw(z)-[-d-~]wPweXp(-pwflwz)F~(z), [15] 

where 

and 

Pw 
IL 

Fw(z) 

F~(z) 

Zw 

= differential Compton scattering cross section for Lucite, which has the value of 
3.776 x l0 -3 cm2/g sr, 

= 1.18 g/cm 3, the density of Lucite, 
= 0.2605 cm2/g, the attenuation coefficient for Lucite, 
= fraction of  the cross-sectional area of  the photon beam at point z which intercepts 

the Lucite wall, 
(1.0, for O~<z ~<Zw, 
% 

~0.0, for Zw ~< z, 
= thickness of  the Lucite wall, which was, zw = 3.175 ± 0.015 cm, 

eo(Z) = measurement noise, taken to be the statistical counting error. 
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Figure 4. Cross section of an eccentric annulus test section and measurement points. 

Since a convolution integral is symmetric, [14] can be rewritten as 

C~ ) (Z) = ~o R , (Z  - z)K(z) dz + ec(Z). [16] 

Equations [14] and [16] imply that the convolution equation can be solved either as a density 
function, Rw(Z), or a kernel, K(z), identification problem. 

The solution of these integral equations was done numerically. The discretization of [16] was 
performed by approximating the integration by the trapezoidal rule. The Method of Regularization 
was used (Ohkawa & Lahey 1983) to evaluate the integral. This technique was previously applied 
to data taken in a concentric annulus, and good results were reported (Ohkawa & Lahey 1984). 
In this paper the results of the study of an eccentric annulus are reported. 

The local measurement points for the eccentric annulus experiments are shown schematically in 
figure 4, and typical counting rate and density profiles are shown in figures 5-8. It can be seen that 
the mixture density is much lower in the wide gap than the narrow gap. Indeed the observed lateral 
phase distribution is pronounced. 

Typical 3-D void profiles are shown in figures 9-13 for the eccentric annulus. It can be seen that 
in adiabatic air/water experiments of Ohkawa & Lahey (1983) the local void fraction was 
significantly higher in the wide gap than in the narrow gap. Indeed, for a global void fraction of 
80%, run HH, bubbly flow was noted in the narrow gap and annular flow in the wide gap. In fact, 
it appears that one can pass through the entire flow regime map by circumferentially moving 
around the rod from the wide to the narrow gap. Thus, it appears that substantial lateral phase 
separation occurs, and that a more general definition of flow regime is needed for complex geometry 
conduits. 

It is significant to note that prior experiments (Shiralkar & Lahey 1972), which were conducted 
in boiling freon-114 using a hot-wire anemometer, showed essentially the same data trends. That 

UMF 15/3--K 
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dictions based on density solutions for high water flow 

in the wide gap of  an eccentric annulus (0°). 
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Figure 9. 3-D Map for no water flow and low air flow; 20% global void fraction in an eccentric annulus (run ZL). 

Figure 10. 3-D Map for no water flow and medium air flow; 50% global void fraction in an eccentric annulus (run ZM). 

Figure 1 I. 3-D Map of void fraction for high water flow and low air flow; 20% global void fraction in an eccentric annulus 
(run HL). 
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Figure 12. 3-D Map of void fraction for high water flow and medium air flow; 50% global void fraction in an eccentric 
annulus (run HM). 

Figure 13. 3-D Map of void fraction for high water flow and high air flow; 80% global void fraction in an eccentric annulus 
(run HH). 

is, the vapor  phase always tends to preferentially collect in wide gap regions of  an eccentric annulus. 
Thus, the observed lateral void distribution is apparently not related to the fluids used or the 
method of  vapor  formation. Indeed, strong lateral "void drift" forces (Lahey & Moody 1977) are 
evident. 

SUMMARY AND CONCLUSIONS 

A thorough understanding of multidimensional phase distribution phenomena is needed before 
reliable predictions can be made in conduits of  complex geometry. The 7-ray scattering densitome- 
ter discussed herein allows one to make local void fraction measurements in complex geometry 
conduits nonintrusively. Indeed, a full set of  data have been taken for concentric (Ohkawa & Lahey 
1984) and eccentric annuli. Such data are considered vital for model assessment and present a 
significant challenge to current generation two-fluid models of  two-phase flow. 
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